Eye-specific projections of retinogeniculate axons are altered in albino mice.
نویسندگان
چکیده
The divergence of retinal ganglion cell (RGC) axons into ipsilateral and contralateral projections at the optic chiasm and the subsequent segregation of retinal inputs into eye-specific domains in their target, the dorsal lateral geniculate nucleus (dLGN), are crucial for binocular vision. In albinism, affected individuals exhibit a lack or reduction of pigmentation in the eye and skin, a concomitant reduced ipsilateral projection, and diverse visual defects. Here we investigate how such altered decussation affects eye-specific retinogeniculate targeting in albino mice using the C57BL/6 Tyr(c-2J/c-2J) strain, in which tyrosinase, necessary for melanogenesis, is mutated. In albino mice, fewer RGCs from the ventrotemporal (VT) retina project ipsilaterally, reflected in a decrease in cells expressing ipsilateral markers. In addition, a population of RGCs from the VT retina projects contralaterally and, within the dLGN, their axons cluster into a patch separated from the contralateral termination area. Furthermore, eye-specific segregation is not complete in the albino dLGN and, upon perturbing postnatal retinal activity with epibatidine, the ipsilateral projection fragments and the aberrant contralateral patch disappears. These results suggest that the defects in afferent targeting and activity-dependent refinement in the albino dLGN arise from RGC misspecification together with potential perturbations of early activity patterns in the albino retina.
منابع مشابه
Rearrangement of Retinogeniculate Projection Patterns after Eye-Specific Segregation in Mice
It has been of interest whether and when the rearrangement of neuronal circuits can be induced after projection patterns are formed during development. Earlier studies using cats reported that the rearrangement of retinogeniculate projections could be induced even after eye-specific segregation has occurred, but detailed and quantitative characterization of this rearrangement has been lacking. ...
متن کاملSwitching retinogeniculate axon laterality leads to normal targeting but abnormal eye-specific segregation that is activity dependent.
Partial decussation of sensory pathways allows neural inputs from both sides of the body to project to the same target region where these signals will be integrated. Here, to better understand mechanisms of eye-specific targeting, we studied how retinal ganglion cell (RGC) axons terminate in their thalamic target, the dorsal lateral geniculate nucleus (dLGN), when crossing at the optic chiasm m...
متن کاملDevelopment of the mammalian retinogeniculate pathway: target finding, transient synapses and binocular segregation.
This review is concerned with the development of the mammalian retinogeniculate projection from the perspective of our studies on the hamster and to a lesser extent on the cat. In these, and other mammalian species, axons from the two eyes initially spread throughout the dorsal lateral geniculate nucleus (dLGN) and thus completely overlap. Later they segregate, the axons from each eye coming to...
متن کاملPrenatal development of retinogeniculate axons in the macaque monkey during segregation of binocular inputs.
In the fetal monkey the projections from the two eyes are initially completely intermingled within the dorsal lateral geniculate nucleus (DLGN) before separating into eye-specific layers (). To assess the cellular basis of this developmental process, we examined the morphological properties of individual retinogeniculate axons in prenatal monkeys of known gestational ages. The period studied sp...
متن کاملMorphology of retinogeniculate X and Y axon arbors in cats raised with binocular lid suture.
1. We examined the terminal arbors of single, physiologically identified retinogeniculate X and Y axons in 13 adult cats raised from birth with binocular lid suture. We recorded in the optic tract from 146 retinogeniculate axons. We studied the response properties of each axon encountered and attempted to penetrate it for labeling with horseradish peroxidase. 2. We attempted to classify each re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 14 شماره
صفحات -
تاریخ انتشار 2012